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Abstract

Assuming that the product’s degradation paths satisfy a non-linear diffusion process, this paper
proposes a systematic approach to improve the mean lifetime (MTTF) of highly reliable products.
First, an intuitively appealing identification rule is proposed. Next, under the constraint of a
minimum probability of correct decision and a maximum probability of incorrect decision of the
proposed identification rule, the optimum test plan (including the determination of inspection
frequency, sample size, and termination time for each run) can be obtained by minimizing the
total experimental cost. An example is provided to illustrate the proposed method.

1 Introduction

Due to strong pressure for marketing, continuous improvement of a product’s reliability has become necessary
for manufacturers to compete with others. Hence, the following fundamental work is essential: improving the
product’s reliability if it does not match customers’ requirement. Statistical design of experiments (DOE)
is always adopted to identify the factors that are influential to the product’s reliability. Condra (1993) gave
some examples of using DOE to improve reliability in the area of electronics.

For a highly-reliable product, it is difficult or nearly impossible to assess the product’s lifetime by using
traditional life tests or accelerated life tests. Rather, if there exist product characteristics whose degradation
over time can be related to reliability, then collect “degradation data” of those characteristics can provide
information about the product’s reliability. Meeker & Escobar (1998, Chapters 13 and 21) gave an updated
literature survey on the approaches of assessing reliability information via degradation data.

In conducting a degradation experiment, several decision variables such as inspection frequency, sample
size, and termination time for each run are influential to the correct identification of significant factors
and the experimental cost. Recently, Tseng, et al. (1995) and Yu & Tseng (2002) used a transformed
degradation model to demonstrate how to determine the optimal settings of these decision variables so that
the significant factors can be picked up successfully. In the above approach, however, the lifetime inference is
very sensitive the precision of estimated parameters in their degradation models. To overcome this difficulty,
motivating from an LED degradation data, this article uses a stochastic diffusion model to describe the
product’s degradation path. In the following, we first describe the experimental layout of a degradation
experiment. Then we propose a general non-linear degradation model and we use an optimization model to
solve the optimal settings of a degradation experiment.

2 Problem Formulation

2.1 The experimental layout

Assume that an orthogonal array OA(r, (2m) with degradation model is conducted as follows:



Factors
Run F1 · · · Fh · · · Fm Degradation paths

1 c11 · · · c1h · · · c1m {L1j(tk)}l, n
k=1,j=1

...
...

...

i ci1 · · · cih · · · cim {Lij(tk)}l, n
k=1,j=1

...
...

...

r cr1 · · · crh · · · crm {Lrj(tk)}l, n
k=1,j=1

where the design points, r, is a multiple of 4, all the factors have two levels, and the number of factors is
m ≤ r − 1.

Assumptions:

1. For each run, there are m factors, say F1, F2, . . . , Fm, that may affect the product’s reliability. Assume
that there exist no interactions among these factors.

2. Two levels of each factor are denoted by (−, +) and referred to as the (low, high) settings. More
specifically, For each 1 ≤ i ≤ r, and 1 ≤ h ≤ m, we define

cih =

{

−1 if Fh is evaluated at low level
1 if Fh is evaluated at high level.

3. At each run, n devices are randomly selected for testing.

4. At each run, the measurements are made per f units of time (e.g., f hours or f days) until the time
tl = f ∗ l, where l is a positive integer.

5. The degradation model:
Let Lij(t) denote the degradation path of the jth device under the ith run at time t. Motivating by
Tseng & Peng (2004), we assume that there exists a suitable function si(t) such that

Lij(t) = Mi(t) + εij(t), t ≥ 0,

where
dεij(t) = si(t)dB(t).

Note that Mi(t) denote the mean degradation path under the ith run and B(t) be a standard Brownian
motion (Wiener process).

6. The lifetime of the product (Tij): Tij is defined as the first time when Lij(t) falls below a critical level
ω.

2.2 An identification rule

For 1 ≤ h ≤ m, let Eh denote the main effect of factor Fh. Then

Eh =
2

r

(

r
∑

i=1

cihθi

)

, (1)

where θi denotes the mean-time-to-failure (MTTF) of the ith run.



For pre-specified constants ∆0 and ∆1 (∆1 > ∆0 > 0), if | Eh |≥ ∆1, then we say that Fh is practically
significant; If | Eh |≤ ∆0, then we say that Fh is practically negligible.

Let [Eh, Ēh] be the corresponding 100(1− γ)% confidence interval of Eh. Then an identification rule (R)
is proposed as follows:

R: For 1 ≤ h ≤ m, Fh is identified as a statistically significant factor if 0 6∈ [Eh, Ēh],

while Fh is identified as a statistically negligible factor if 0 ∈ [Eh, Ēh].

3 The optimization problem

Suppose that there are q(≤ m) factors of practical significance. In this case, we will assume without loss
of generality that F1, F2, . . . , Fq are the significant factors. Let Q denote the set of indices of all significant
factors, i.e., Q = {1, 2, 3, . . . , q}. The goal is to select the set of all practically significant factors, while
controlling the maximum probability of false positives for insignificant effects as small as we like.

Define

Ω = { ~E = (E1, E2, . . . , Em)| | Ei |< ∞, 1 ≤ i ≤ m}.

The following two subsets (Ω0 and ΩQ) of Ω are critical to the decision maker. Let

ΩQ = { ~E = (E1, E2, . . . , Em)| min
1≤h≤q

| Eh |≥ ∆1}

and

Ω0 = { ~E = (E1, E2, . . . , Em)| max
1≤h≤m

| Eh |≤ ∆0}.

Note that Ω0 denotes the set of all practically negligible effects and ΩQ denotes the set of all practically

significant effects. We say that Rule R gives a correct decision (CD) for ~E = (E1, E2, . . . , Em) ∈ ΩQ, if Fh is
identified as a statistically significant factor for all h ∈ Q. Similarly, Rule R gives an incorrect decision (ICD)

for ~E = (E1, E2, . . . , Em) ∈ Ω0, if Fh is identified as a statistically significant factor for some h, 1 ≤ h ≤ m.
Let P~E

(CD | R) and P ~E
(ICD | R) denote the probabilities that Rule R gives correct decisions and

incorrect decisions for ~E, respectively. To enhance the quality of our decision, we usually impose the
following conditions:

inf
~E∈ΩQ

P~E
(CD | R) ≥ 1− β, (2)

and
sup
~E∈Ω0

P~E
(ICD | R) ≤ α, (3)

where 1−β is the power of the procedure, the minimum probability of correctly identifying effects of practical
significance, and α is the significance level, the maximum probability of false positives for negligible effects.
Note that, α and β are pre-determined values given by the decision maker.

This may lead to several combinations of decision variables (f, l, n) that satisfy Equations (2) and (3).
However, the decision variables (f, l, n) will affect the experimental cost. Thus, a trade-off is needed. Let
TC(f, l, n) denote the total cost of conducting the experiment. Then a typical decision problem can be
formulated as follows:



Minimize

TC(f, l, n) (4)

Subject to

inf ~E∈Ωq
P~E

(CD | R) ≥ 1− β

sup~E∈Ω0

P~E
(ICD | R) ≤ α

where f , l, n ∈ N={1, 2, 3, . . .}.

4 Optimum Test Plan

The framework of accomplishing the optimization model consists of the following four parts:

1. Characterize the cost function TC(f, l, n).

2. Estimate Eh.

3. Compute the confidence interval [Eh, Ēh].

4. Compute inf ~E∈Ωs
P~E

(CD | R) and sup~E∈Ω0

P~E
(ICD | R).
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